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RESUMO

DEL BEN, M. G. Mensuração de drift conceitual de avaliações de produtos da
Amazon utilizando text embeddings. 2023. 45p. Monografia (Trabalho de Conclusão
de Curso) - Instituto de Ciências Matemáticas e de Computação, Universidade de São
Paulo, São Carlos, 2023.

A manutenção de modelos de aprendizado de máquina para tarefas de linguagem natural é
um tópico de especial atenção atualmente, com o aumento de aplicações disponíveis para o
público. Com esse intuito, é importante acompanhar e mensurar o drift conceitual que pode
ocorrer com a eventual mudança dos dados interpretados por esse modelo. Para o contexto
de PLN, uma possível estratégia de mensuração envolve a extração de text embeddings
e aplcação de métricas de distância para acompanhar a variação dessas representações.
Neste projeto, aplicamos esse método para a evolução ao longo dos anos de avaliações
de produtos na Amazon de diferentes categorias: Luxuary Beauty, Musical Instruments e
Office Products. Observamos a presença de drift conceitual para a categoria Office Products,
o que reflete a revolução tecnológica por qual essa área passou durante os anos avaliados.

Palavras-chave: PLN. BERT. DistilBERT. Representação textual. Drift.





ABSTRACT

DEL BEN, M. G. Measurement of conceptual drift in Amazon product reviews
using text embeddings. 2023. 45p. Monograph (Conclusion Course Paper) - Instituto
de Ciências Matemáticas e de Computação, Universidade de São Paulo, São Carlos, 2023.

The maintenance of machine learning models for natural language tasks is currently a
topic of particular attention due to the increasing availability of applications for the public.
It is crucial to monitor and measure conceptual drift that may occur with any changes in
the data interpreted by these models. For the context of Natural Language Processing
(NLP), one potential measurement strategy involves extracting text embeddings and
applying distance metrics to track the variation of these representations. In this project, we
applied this method to assess the evolution over the years of product reviews on Amazon
from different categories: Luxury Beauty, Musical Instruments, and Office Products. We
observed the presence of conceptual drift in the Office Products category, reflecting the
technological revolution that this area underwent during the assessed years.

Keywords: NLP. BERT. DistilBERT. Text embedding. Drift.
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1 INTRODUÇÃO

Algoritmos de aprendizado de máquina e inteligência artificial são tópicos que vêm
crescendo dentro do vocabulário público há anos. Uma série de diferentes modelos foram
desenvolvidos, possuindo uma série de aplicações em áreas distintas: mercado financeiro,
saúde, redes sociais, comércio, infraestrutura e logística, dentre outros. Suas aplicações
tornam-se cada vez mais presentes na realidade da vivência cotidiana (2).

Dentre desse contexto, o desenvolvimento de modelos para o processamento de
linguagem natural tem um destaque especial. Uma grande parcela do conteúdo produzido
pela humanidade e sua principal forma de comunicação é no formato de dados textuais.
Logo, a capacidade de compreendê-los e extrair análises relevantes a partir de textos é
uma tarefa comumente estudada no contexto de aprendizado de máquina (3).

Atualmente, modelos de linguagem natural já são utilizados pelo público leigo,
sendo integrados em diversas áreas. Um claro exemplo disso é o ChatGPT, que hoje
é praticamente ubíquo para uma considerável parcela da população. Considerando a
capacidade destes modelos e sua aplicações, torna-se indispensável garantir que sua
performance seja continuamente monitorada e mantida.

Portanto, é quase inevitável que um modelo que tenha sido colocado em produção
e disponibilizado para uso diário enfrente o que é chamado de drift. A realidade na qual
essas ferramentas não são estáticas, de forma que o contexto em que elas foram treinadas
evoluam com o tempo. Os conceitos e contexto nos quais o algoritmo foi treinado pode
mudar com o tempo, resultando num decaimento da performance do modelo.

Logo, o acompanhamento e mensuração do drift de um modelo é um aspecto
essencial do ciclo de vida prático de uma ferramenta desse tipo. Este projeto visa avaliar e
aplicar estratégias de mensuração de drift dentro do contexto de tarefas de processamento
de linguagem natural.

Para esse objetivo, propomos a análise de sentimento de avaliações de produtos de
diferentes categorias vendidos na Amazon. Os dados utilizados desta base possuem uma
distribuição temporal considerável, sendo assim possível de capturar possíveis variações
conceituais com o tempo. Além disso, é possível comparar a existência e intensidade do
drift para diferentes categorias.

O presente projeto tem como objetivo identificar e quantificar a evolução da variação
conceitual dos textos de avaliações de produtos de diferentes categorias ao longo dos anos,
fazendo uso de métricas apropriadas para o caso de processamento de linguagem.
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2 FUNDAMENTAÇÃO TEÓRICA

Este cápitulo apresenta os principais fundamentos necessários para o desenvolvi-
mento do projeto, com especial ênfase no tópico de processamento de linguagem natural
(PLN), essencial para compreensão do trabalho.

2.1 Processamento de Linguagem Natural

Processamento de linguagem natural é uma área das ciências computacionais cujo
objetivo é a utilização de técnicas e algoritmos para aprender, entender e reproduzir a
linguagem humana, introduzida na década de 1950 como a intersecção entre inteligência
artificial e linguística (4). Atualmente, PLN é utilizada em uma série de diferentes contextos:
tradução automática, mineração de texto, predição de escrita, filtros de e-mail, monitoração
de redes sociais, etc.

Inicialmente, estratégias de PLN envolviam a codificação concreta das regras
gramaticais e vocabulário de uma dada linguagem. Rapidamente percebeu-se a limitação
de tal técnica, principalmente devido ao uso de metáforas e outras figuras de linguagem,
resultando em textos cuja compreensão semântica era muito dificultada.

Com o passar dos anos, principalmente na década de 80, houve um deslocamento
para a utilização de técnicas de análise estatística para o desenvolvimento de ferramentas
de PLN. Para capturar as estruturas tipicamente presentes na linguagem natural, vastas
quantidades de textos foram utilizados em estratégias de aprendizado de máquina.

Hoje, os modelos de PLN mais refinados fazem uso de complexas redes neurais
treinadas utilizando conjuntos de dados compostos por uma enorme quantidade e variedade
de textos. Nas próximas seções, descreveremos o funcionamento de alguns dos principais
modelos de linguagem, e apresentaremos os algoritmos de principal relevância.

2.2 Modelos de Linguagem

Modelos de linguagem são distribuições probabilísticas definidas sobre uma dada
sequência ou conjunto de palavras (5). Matematicamente, para uma dada sequência de m

palavras, o modelo define uma probabilidade P (w1, ..., wm) para a toda sequência. Logo, o
modelo também pode ser capaz de prever qual seria a próxima palavra, atribuindo a ela
uma probabilidade P (wm+1).

As capacidades de atribuir uma probabilidade a uma dada sequência e de prever
qual seria a próxima palavra coerente com as demais são ferramentas úteis para diversos
cenários presentes em nosso cotidiano: reconhecimento de voz, correção gramatical, tradução
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automática e geração de texto, entre outros. Ao digitar uma mensagem, pesquisar algo,
escrever um texto, em todas essas situações, há o uso de modelos de linguagem.

O desenvolvimento e obtenção de tais modelos é uma área de grande importância
para o processamento de linguagem natural. Nas próximas seções, apresentaremos alguns
exemplos dos principais modelos utilizados, detalhando seu funcionamento e eficácia. Essas
seções são baseadas no conteúdo presente no livro Speech and Language Processing, dos
autores Dan Jurafsky e James H. Martin, 2023 (5).

2.2.1 N-gramas

Consideremos um cenário onde queremos obter a probabilidade de uma palavra w

dado um histórico h, isso é, desejamos calcular P (w|h). Suponha que o histórico seja “o
garoto foi para a casa de” e queremos saber qual a probabilidade da próxima palavra ser
“ônibus”:

P (ônibus|o garoto foi para a casa de). (2.1)

Uma forma de estimar esse valor seria por meio do método de contagem relativa:
com um corpus suficientemente grande, contamos o número de ocorrência da frase “o
garoto foi para a casa de” e o número de ocorrências dessa mesma frase seguida por
“ônibus”. Com isso, podemos calcular

P (ônibus|o garoto foi para a casa de) = C(o garoto foi para a casa de ônibus)
C(o garoto foi para a casa de) , (2.2)

isto é, de todas as vezes que observamos h, quantas vezes ela foi procedida por w.

Apesar de ser um método eficaz para alguns casos, a realidade é que não há um
corpus grande o suficiente para englobar todas as possíveis combinações de termos. Isso
faz com que nosso modelo não seja capaz de estimar a probabilidade em muitos casos.
Dessa forma, torna-se necessário desenvolver outro método para estimar a probabilidade
desejada.

Consideremos uma sequência n de palavras w1, ..., wn, também representada por
w1:n. Suponha que desejamos determinar a probabilidade de termos essa dada sequên-
cia, P (w1, ..., wn). Para calcular esse valor, podemos fazer uso da regra de cadeia da
probabilidade, obtendo:

P (w1:n) = P (w1)P (w2|w1)P (w3|w1:2) . . . P (wn|w1:n−1)

=
n∏

k=1
P (wk|w1:k−1).

(2.3)

A equação acima mostra que é possível obter a probabilidade de uma dada sequên-
cia de palavras pelo produto de um número de diferentes probabilidades condicionais.
Entretanto, essa propriedade não resolve o nosso problema: prever uma palavra dada um
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longo histórico. A linguagem está em constante evolução, tornando extremamente provável
que nos deparemos com um contexto totalmente novo.

Uma simples intuição que pode simplificar nosso problema é a seguinte: em vez de
consideramos todo o histórico que antecede uma palavra, consideramos apenas a palavra
precedente. Matematicamente, isso significa que assumimos que a seguinte aproximação é
válida:

P (wn|w1:n−1) ≈ P (wn|wn−1). (2.4)

Essa suposição é chamada de suposição de Markov. Modelos de Markov são uma
classe de modelos probabilísticos que assumem que podem prever probabilidade futuras
sem olhar para todo o histórico relevante. A Equação 2.4 se refere a um bigrama, o caso
no qual consideramos apenas uma palavra antecedente. Podemos generalizar para um
N-grama utilizando a seguinte equação:

P (wn|w1:n−1) ≈ P (wn|wn−N+1:n−1). (2.5)

As equações acimas fornecem os termos necessários para a construção de um modelo
de N-grama, capazes de serem utilizados para aplicação de processamento de linguagem.
O próximo passo é estimar o valor das probabilidades acima. Podemos estimar esse valor
fazendo a contagem a partir de um corpus e normalizando esse valor:

P (wn|wn−N+1:n−1) = C(wn−N+1:n−1 wn)
C(wn−N+1:n−1)

, (2.6)

ou seja, a probabilidade é dada pela razão entre a frequência observada de uma dada
sequência (wn−N+1:n−1 wn) e a frequência observada do prefixo (wn−N+1:n−1).

Apesar de modelos de n-grama serem capazes de obter forte poder de predição de
palavras, eles ainda apresentam certas limitações: não lidam bem com históricos muito
extensos e tem dificuldade em generalização de contextos similares, mas não idênticos.
Logo, há a motivação de utilizar ferramentas diferentes para obtenção de modelos de
linguagem. Na próxima seção, discutiremos sobre uma delas: redes neurais.

2.2.2 Redes Neurais

Redes neurais (RNs) são uma ferramenta computacional fundamental no contexto
de processamento de linguagem natural. Construídas a partir do neurônio de McCulloch-
Pitts (6), redes neurais modernas são compostas por redes de pequenas unidades de
processamento, as quais recebem um vetor de entrada e retornam um único valor de saída.

Redes neurais apresentam um aspecto de muita utilidade para tarefas de PLN. A
partir de dados crus, ao longo do processo computacional, as redes são capazes de aprender
características relevantes dos dados, aprimorando seu algoritmo. Logo, redes neurais são
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especialmente eficientes para tarefas que oferecem suficiente quantidade de dados para
esse aprendizado.

Inciaremos com a apresentação da rede mais simples, a rede neural feedforward
(feedforward neural network, FNN). Ela é composta por múltiplas camadas onde cada
unidade de processamento está conectada sem ciclos: as saídas das unidades em uma
camada são passadas apenas para a próxima camada e não para camadas anteriores
(Figura 1).

Figura 1 – Arquitetura de uma rede neural feedforward. Possui uma camada de entra
(input layer, uma camada de saída (output layers) e uma ou mais camadas
ocultas (hidden layers). Por simplicidade, a figura apresenta uma única camada
oculta. Fonte: dataaspirant.com

Apesar de simples, é possível utilizar uma rede desse tipo para o desenvolvimento de
um modelo de linguagem (7). A rede recebe como entrada em um instante t a representação
de um dado número de palavras prévias (wt−1, wt−2, etc.) e então retorna uma distribuição
de probabilidade das próximas possíveis palavras.

De forma análoga aos modelos de n-grama, nosso modelo neural aproxima a
probabilidade dado todo o contexto prévio considerando apenas um número N de palavras
anteriores:

P (wt|w1, . . . , wt−1) ≈ P (wt|wt−N+1, . . . , wt−1) (2.7)

Uma das principais vantagens destes modelos é sua capacidade de generalização
para casos com palavras inéditas. Isso é possível devido ao método que as redes neurais
utilizam para representar palavras: word embeddings. Este método envolve representar
palavras como vetores, de forma que palavras com significados semânticos próximos
também tenham vetores próximos no espaço vetorial.

https://dataaspirant.com/neural-network-basics/
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Para entender como esse método pode útil para a generalização, consideremos que
nosso corpus utilizado para treinamento contenha a seguinte frase:

“Eu preciso ver se o gato comeu.”,

não contenha nenhum caso em que a palavra “cachorro” seja seguida por “comeu”. Suponha
que desehamos prever a palavra seguida do contexto “Eu não sei se o cachorro”. Para um
modelo de n-grama, isso poderia ser um complicador. Um modelo de rede neural entretanto,
sabendo que “gato” e “cachorro” possuem representações vetoriais próximas, seria capaz de
generalizar a partir do contexto de “gato” para atribuir uma alta probabilidade a “comeu”.

Apesar das vantagens descritas acima, modelos de linguagem utilizando FNNs
possuem dificuldade em capturar uma das principais características da linguagem: sua
temporalidade. O modelo descrito acessa simultaneamente um contexto prévio definido por
um número fixo de palavras de interesse. Para predições seguintes, o contexto é deslizado
para incorporar a nova saída obtida pelo processo e então realiza uma nova previsão,
independente da anterior.

Para resolver esse problema, podemos fazer uso de redes neurais recorrentes (recur-
rent neural networks, RNNs) cuja arquitetura é capaz de lidar com o aspecto temporal da
linguagem.

2.2.3 Redes Neurais Recorrentes

A principal diferença na arquitetura de RNNs é a presença de ciclos: as saídas
das unidades de processamento em uma camada também são passadas para camadas
anteriores. Isso significa que o valor de saída de uma rede recorrente num determinado
instante de tempo t depende de seu resultado no instante anterior t − 1 (Figura 2).

Dado essa arquitetura, as camadas ocultas da rede servem como um tipo de memória,
que registra procedimentos anteriores e informa as decisões efetuadas em instantes seguintes.
Em comparação com FFNs, que sempre observavam um contexto prévio de tamanho pré-
definido, o contexto presente nas camadas ocultas pode, teoricamente, conter informação
que se refere até ao começo da sequência.

Esses atributos de RNNs são de grande utilidade no contexto de modelos de
linguagem. Modelos de RRN processam a sequência de entrada uma palavra por vez,
tentando prever a próxima palavra utilizando a palavra atual e o estado anterior da
camada oculta (8). Logo, tais modelos apresentam certas vantagens quando comparados
aos apresentados anteriormente: não possuem o contexto limitado de n-gramas, nem o
contexto prévio fixado de modelos de FFN possuem.
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Figura 2 – Arquitetura de uma rede neural recorrente (RNN). A principal diferença é a
característica cíclica representada pelas setas que indicam que a saída de uma
camada é utilizada com entrada de uma cada anterior. Fonte: dataaspirant.com

2.3 Transformadores

Por muito tempo, modelos de linguagem construídos utilizando RNNs foram o estado
da arte, mas eles não eram isentos de limitações. Sua natureza sequencial necessariamente
impossibilitava estratégias de paralelização para treinamento, um problema que torna-se
crítico quando consideramos sequências de texto longos.

Outra limitação diz respeito a memória da RNN em relação a elementos anteriores
muito distantes. Tipicamente, quanto mais distante for um termo passado, menor é seu
impacto durante o processo de previsão das próximas palavras. Para sanar essa limitação,
foram introduzidos mecanismos de atenção, que permitiam que o modelo considerasse
devidamente palavras passadas, independente de sua distância (9).

Considerando o impacto dos mecanismos de atenção na performance desse modelos,
em 2017 foi proposta uma arquitetura que fazia uso apenas de atenção, sem a capacidade
recorrente de RNNS (1). Esse novo modelo foi chamado de transformer e depende exclusi-
vamente desses mecanismos para traçar relações globais entre os elementos de entrada e
saída.

Apesar de ter sido desenvolvido para tarefas tipicamente sequenciais de PLN, como
tradução e resumo de texto, sua arquitetura não é intrinsecamente sequencial como no
caso de RNNs. Transformers utilizam atenção para extrair informações relevantes sobre
o contexto de uma palavra, e assim criando sua representação vetorial (word embedding.
Logo, transformers são naturalmente mais fáceis de serem paralelizados, aumentando a

https://dataaspirant.com/neural-network-basics/
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Figura 3 – Arquitetura de um transformer. Baseada na estrutura coder-encoder
(codificador-decodificador), ambos são compostos por estrutura de módulos que
podem ser empilhados uma sobre a outra. Fonte: Attention Is All You Need
(1).

velocidade de treinamento e possibilitando o desenvolvimento de modelos de linguagem
massivos.

2.3.1 GPT

Transformadores geradores pré-treinados (generative pre-trained transformers, GPT)
são um tipo de modelo grande de linguagem (large language model LLM), pré-treinados
em uma grande quantidade de textos não catalogados.

Inicialmente, GPT foi introduzido em 2018 pela OpenAI (10), o primeiro de uma
série que seriam desenvolvida pela empresa. Cada um desses modelos foi desenvolvido com
uma maior número de parâmetros e conteúdo para o treinamento que o seus anteriores.
Como ponto de referência, o GPT-1 tinha 117 milhões de parâmetros. Em comparação, é
estimado que a sua versão mais recente, o GPT-4, tenha 1,7 trilhões de parâmetros.

Esses modelos tipicamente servem como base para a construção de novos modelos
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com objetivos e tarefas mais específicas. Um exemplo conhecido pela população é o
ChatGPT, um serviço de chatbot construído utilizando um modelo GPT.

2.3.2 BERT

BERT (Bidirectional Encoder Representations from Trasnformer) se refere a uma
familía de modelos introduzida em 2018 por pesquisadores do Google (11). A arquitetura
de tais modelos é composta apenas por codificadores, de forma distina daquela inicialmente
introduizda para transformadores.

Como é o caso para o GPT, BERT também é um modelo pré-treinado, considerando
duas tarefas distintas: modelagem de linguagem, na qual o objetivo é prever a próxima
palavra dada um contexto e predição de frases, na qual o objetivo é determinar se duas
frases aleatórias aparecem sequencialmente no corpus utilizado.

Para o presente trabalhado, foi utilizado uma versão reduzida deste modelo, cha-
mado DistilBERT (12). O número de parâmetros utilizados é reduzido por um fator de
40% , mas é capaz de manter 95% da performance quando comparado ao modelo original.

2.4 Drift

Drift, dentro do contexto de aprendizado de máquina, se refere ao decaimento
da performance de um dado modelo com o tempo após sua publicação. De uma forma
geral, ocorre quando a os dados variam com o tempo de forma que invalidam o modelo
inicialmente treinado.

Drifts podem ser classificados em diferentes tipos. O de interesse para esse projeto
é o chamado drift conceitual, que ocorre quando o contexto dos dados a serem analisados
evoluiu e muda com o tempo, resultado em um novo contexto experimental para qual o
modelo não foi adequadamente treinado.

2.4.1 Detecção de Drift

Para o caso de drift conceitual, podemos detectar se houve uma mudança nos
nossos dados considerando a evolução de sua distribuição com o tempo. Dessa forma,
existe uma série de testes estatísticos que são capazes de avaliar se duas amostras fazer
parte de uma mesma distribuição, dentre eles:

• Teste Kolmogorov-Smirnov (KS): teste estatístico não-paramétrico utilizado
para determinar se duas amostras são provenientes da mesma distribuição.

• Índice de Estabilidade Populacional (PSI): medida estatística utilizada para
comparar a distribuição de uma variável categórica em duas amostras distintas.
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• Método Page-Hinkley: método estatístico que detecta variações no valor médio
de uma série de dados ao longo do tempo.

Os métodos descritos acima são úteis e tipicamente utilizados para o monitoramento
de drift de modelos em produção, podendo ser usados como indicadores de que o modelo
precisa ser atualizado ou corrigido. Entretanto, essas técnicas tem como foco principal
dados estruturados, o que dificulta sua aplicação para o caso de modelos que lidam com
textos ou imagens.

Para lidar com essa limitação, dados não-estruturados são transformados em
representações vetoriais. Para o caso específico de análise textuais, utilizamos modelo de
PLN para extrair seus embeddings. Com essas representações, podemos utilizar métricas
que medem a diferença entre os embeddings de duas amostras, como distância euclidiana e
distância de cosseno.





35

3 METODOLOGIA

3.1 Base de Dados

Para a análise de evolução temporal de conceitos, foi utilizada a base de dados
Amazon Review Data (2018) (13). Esses dados consistem nas avaliações sobre diferentes
produtos feitas por usuários entre o período de maio de 1996 até Outubro de 2018. O
conjunto de dados possuí os seguintes atributos:

• revierID: ID do avaliador (ex: A2SUAM1J3GNN3B).

• asin: ID do produto (ex: 0000013714).

• reviewerName: nome do avaliador.

• vote: número de votos de utilidade da avaliação.

• style: um dicionário da metadata do produto (ex: "Formato": "Capa dura").

• reviewText: texto da avaliação.

• overall: nota do produto.

• summary: resumo da abaliação.

• unixReviewTime: instante em que foi feita a avaliação (horário UNIX).

• reviewTime: instante em que foi feita a avaliação.

• image: imagens pulicadas por usuários após terem recebido o produto.

Para o presente projeto, apenas os atributos reviewText, overall e reviewTime
foram utilizados. Os dados são separados em subconjuntos definidos pela categoria dos
produtos, totalizando 29 subconjuntos diferentes. A Tabela 1 lista quais foram as categorias
utilizadas durante o trabalho, assim como o número de avaliações presentes:

Tabela 1 – Número de avaliações por categoria de produto

Categoria de Produto Conjunto Total Subconjunto Denso

Luxury Beauty 574.628 34.278

Musical Instruments 1.512.530 231.392

Office Products 5.581.313 800.357

Fonte: Elaborada pelos autores.



36

Para cada categoria, há duas versões da base de dados disponíveis: o conjunto
completo e um subconjunto denso, reduzido de forma que cada usuário e produto tenha pelo
menos cinco avaliações. Devido a limitações de tempo de processamento, o subconjunto
denso foi utilizado para as seguintes categorias: Musical Instruments e Office Products.

3.2 Pré-processamento

Os passos descritos nessa seção são aplicados separadamente para cada categoria
de produtos analisada. Inicialmente, uma limpeza de dados é realizada para garantir que
o atributo reviewText contenha apenas textos. Caso uma avaliação contenha algum tipo
de arquivo adicional, ela é removida. Em seguida, uma nova coluna é criada, chamada
label, de forma a classificar as avaliações em dois grupos: positivas e negativas. A nova
coluna é definida da seguinte forma:

label =

1, se overall ≥ 3

0, se overall < 3
(3.1)

Em seguida, dividimos os dados considerando a data indicada pela coluna reviewTime,
de forma a criar um subconjunto por ano. Para todos os casos, a divisão é inicialmente
feita considerando todos os anos no intervalo entre 1996 e 2018. Entretanto, algumas das
categorias analisadas possuem avaliações apenas a partir de um determinado ano. Nesse
caso, desconsideramos os anos anteriores.

Por último, como é padrão para tarefas de PLN, cada avaliação passa por um
processo de "tokenização". Para isso, foi utilizado um tokenizador DistilBERT pré-treinado.

3.3 Extração dos Embeddings

Para extração das representação vetoriais das avaliações (text embeddings), utiliza-
mos o modelo DistilBERT para classificação de textos, implementado por meio da biblioteca
Transformers (12, 14). Para cada categoria, um ano de referência para comparação é
selecionado, tendo como critério o ano mais antigo com uma quantidade estatisticamente
relevante de avaliações.

O modelo é treinado utilizando um subconjunto do ano de referência como dados
para treinamento, com o objetivo de classificar as avaliações entre positivas e negativas.
Em seguida, os embeddings são extraídos para os conjuntos separados de cada ano.Os
embeddings gerados são vetores numéricos não-normalizados de 128 dimensões.

Uma segunda extração é realizada para o ano de referência, considerando nesse caso
os demais dados do ano que não foram utilizados durante o treinamento. Esse conjunto
sera utilizado com o intuito de servir como ponto de comparação para os demais anos.



37

3.4 Métricas de Distância

Para quantificar a evolução do drift conceitual ao longo dos anos para cada categoria
de produto, foram utilizadas duas métricas de distância: distância euclidiana e distância
de cosseno. Para ambos os casos, um vetor médio dos embeddings é obtido para cada ano
utilizando a seguinte fórmula:

va = 1
n

n∑
i=1

wa
i , (3.2)

onde wa
i é o embedding de cada avaliação no ano a e n o número total de avaliações. Em

seguida, utilizando os vetores médios obtidos, a distância euclidiana entre o vetor médio
de um ano a e o vetor médio do ano de referência r é dado por:

deuc
a =

√√√√128∑
i=1

(va
i − vr

i )2 (3.3)

sendo va
i e vr

i os elementos que compõe, respectivamente, os vetores va e vr. De forma
análoga, a distância do cosseno é calculada usando a seguinte fórmula:

dcos
a = 1 − va · vr

∥va∥∥vr∥
(3.4)

A distância de cosseno é definida de tal forma que é igual a 0 quando o ângulo entre
os vetores é 0◦ e tem valor máximo igual a 2 quando o ângulo é 180◦. Como o principal
objetivo é observar a variação relativa dessas distâncias, os valores obtidos para ambas as
métricas são normalizados pela distância entre os dois subconjuntos do ano de referência.
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4 RESULTADOS E DISCUSSÃO

Os resultados obtidos são apresentados nas figuras abaixo:

Figura 4 – Número de avaliações ao longo dos anos de produtos na categoria Office Products
(material de escritório). Figura superior indica o número total de avaliações em
escala logarítmica. Figura inferior indica a proporção das avaliações que são
negativas.
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Figura 5 – Evolução de métricas de distâncias ao longo dos anos e produtos na categoria
Office Products (material de escritório). Valores estão normalizados em relação
ao ano mais antigo.

Podemos observar na Figura 5 um aumento de ambas as métricas de distância com
o decorrer dos anos, possuindo um comportamento similar. Isso refletiria uma variação
conceitual no conteúdo das avaliações deste produto. Isso pode ser explicado pela revolução
tecnológica e digital que ocorreu dentre os anos de 2008 e 2018: aquilo que se encaixa
como material de escritório mudou com a rápida incorporação de ferramentas tecnológicas
no contexto profissional.

A interpretação para o caso de Office Products pode ser corroborada pelo compor-
tamento observado em Figura 7 e Figura 9. Para estas categorias, não houve um aumento
nas métricas de drift. Utilizando nossa interpretação inicial, também podemos desenvolver
uma justificativa para esse comportamento: não houve nenhuma grande revolução nessas
áreas neste período. O que qualifica um produto como sendo cosmético ou instrumento
musical não mudou significativamente no intervalo temporal analisado.
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Figura 6 – Número de avaliações ao longo dos anos de produtos na categoria Luxury Beauty
(cosméticos de luxo). Figura superior indica o número total de avaliações em
escala logarítmica. Figura inferior indica a proporção das avaliações que são
negativas.

Figura 7 – Evolução de métricas de distâncias ao longo dos anos e produtos na categoria
Luxury Beauty (cosméticos de luxo). Valores estão normalizados em relação ao
ano mais antigo.



42

Figura 8 – Número de avaliações ao longo dos anos de produtos na categoria Musical
Instruments (instrumentos musicais). Figura superior indica o número total
de avaliações em escala logarítmica. Figura inferior indica a proporção das
avaliações que são negativas.

Figura 9 – Evolução de métricas de distâncias ao longo dos anos e produtos na categoria
Musical Instruments (instrumentos musicais). Valores estão normalizados em
relação ao ano mais antigo.
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5 CONCLUSÃO

Com base nos resultado obtidos, podemos confirmar que foi possível identificar a
presença de um drift conceitual nas avaliações de produtos da categoria Office Products.
Essa evolução foi mensurada utilizando duas métricas de distância distintas, euclidiana e
de cosseno, que obtiverem resultado equivalentes.

A evolução conceitual observada para esse caso pode ser explicada pela revolução
tecnológica observada durante os anos de 2008 e 2018, e considerando como materiais de
escritório foram impactados por ela. De forma análoga, podemos justificar a ausência de
uma variação conceitual para as categorias Luxury Beauty eMusical Instruments, por não
ter tido nenhuma grande mudança nessas áreas.

Desta forma, pode-se afirmar que o modelo DistilBERT utilizado para extração
dos text embeddings foi capaz de extrair características semânticas dos textos avaliados,
refletindo numericamente a mudança contextual esperada.

Como próximos passos, podemos implementar outras técnicas estatísticas em
conjunto com as métricas utilizadas, como o Teste Kolmogorov-Smirnov, para tornar mais
robusto e generalizável os resultados obtidos. Além disso, também abre-se a possibilidade
de utilizar o drift mensurado para melhorar a performance de um modelo treinado em um
contexto para tarefas de classificações em um contexto distinto.
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